Exercise 8.2.12

(a)
Show
V 𝜖 ( x ) ¯ { y X : d ( x , y ) 𝜖 } ,

in an arbitrary metric space ( X , d ) .

(b)
To keep things from sounding too familiar, find an example of a specific metric space where
V 𝜖 ( x ) ¯ { y X : d ( x , y ) 𝜖 } .

Answers

(a)
Let y be a limit point of V 𝜖 ( x ) . For all a > 0 , we have some z V 𝜖 ( x ) where d ( z , y ) < a , and thus
d ( x , y ) d ( x , z ) + d ( z , y ) < 𝜖 + a

which implies d ( x , y ) 𝜖 and hence

V 𝜖 ( x ) ¯ { y X : d ( x , y ) 𝜖 }
(b)
Consider the metric space ( R , ρ ) where ρ is the discrete metric, and consider V 1 ( 0 ) = { 0 } . V 1 ( 0 ) ¯ = { 0 } but { y R : ρ ( x , y ) 1 } = R .
User profile picture
2022-01-27 00:00
Comments