Exercise 8.3.3

(a)
Using the simple identity si n n ( x ) = sin n 1 ( x ) sin ( x ) and the previous exercise, derive the recurrence relation
b n = n 1 n b n 2

for all n 2 .

(b)
Use this relation to generate the first three even terms and the first three odd terms of the sequence ( b n ) .
(c)
Write a general expression for b 2 n and b 2 n + 1 .

Answers

(a)
Apply integration-by-parts with h = sin n 1 ( x ) and k = cos ( x ) :
π 2 0 sin n 1 ( x ) sin ( x ) = ( sin n 1 π 2 ) ( cos π 2 ) ( sin n 1 0 ) ( cos 0 )

+

π 2 0 ( n 1 ) sin n 2 ( x ) cos 2 ( x )

b _ n = ( n - 1 )

π 2 0 sin n 2 ( x ) ( 1 sin 2 ( x ) ) = ( n 1 ) b n 2 ( n 1 ) b n

n b _ n = ( n - 1 ) b _ n - 2

b _ n = n - 1 n b n 2

(b)
Evens: b 2 = 1 4 π , b 4 = 3 1 6 π , b 6 = 5 3 2 π . Odds: b 1 = 1 , b 3 = 2 3 , b 5 = 8 1 5
(c)
For n 1 ,
b 2 n = π 2 i = 1 n 2 i 1 2 i  and  b 2 n + 1 = i = 1 n 2 i 2 i + 1
User profile picture
2022-01-27 00:00
Comments