Exercise 8.3.5

Derive the following alternative form of Wallis’s product formula:

π = lim n 2 2 n ( n ! ) 2 ( 2 n ) ! n

Answers

π 2 = i = 1 ( 2 i ) 2 ( 2 i 1 ) ( 2 i + 1 ) = lim n 2 n ( n ! ) 2 ( i = 1 n ( 2 i 1 ) ) ( i = 1 n ( 2 i + 1 ) ) = lim n 2 2 n ( n ! ) 2 ( 2 n n ! ) ( 2 n n ! ( 2 n + 1 ) ) ( ( 2 n + 1 ) ! ) 2 = lim n ( 2 2 n ( n ! ) 2 ( 2 n ) ! ) 2 ( 1 2 n ) ( 2 n 2 n + 1 ) π = ( lim n ( 2 2 n ( n ! ) 2 ( 2 n ) ! ) 2 ( 1 n ) ) ( lim n 2 n 2 n + 1 ) = ( lim n 2 2 n ( n ! ) 2 ( 2 n ) ! n ) 2 π = lim n 2 2 n ( n ! ) 2 ( 2 n ) ! n
User profile picture
2022-01-27 00:00
Comments