Exercise 8.5.2

Using trigonometric identities when necessary, verify the following integrals.

(a)
For all n N ,
π π cos ( nx ) dx = 0    and     π π sin ( nx ) dx = 0
(b)
For all n N ,
π π cos 2 ( nx ) dx = π    and     π π sin 2 ( nx ) dx = π
(c)
For all m , n N ,
π π cos ( mx ) sin ( nx ) dx = 0

For m n ,

π π cos ( mx ) cos ( nx ) dx = 0    and     π π sin ( mx ) sin ( nx ) dx = 0

Answers

(a)
Setting u = nx ,
π π cos ( nx ) dx = 1 n cos ( u ) du = 1 n ( sin ( ) sin ( ) ) = 0
π π sin ( nx ) dx = 1 n sin ( u ) du = 1 n ( cos ( ) cos ( ) ) = 0
(b)
Using part (a),
π π cos 2 ( nx ) dx = 1 2 π π 1 + cos ( 2 nx ) dx = π
2 π = π π 1 dx = π π sin 2 ( nx ) + cos 2 ( nx ) dx π π sin 2 ( nx ) dx = π
(c)
If m = n :
π π cos ( nx ) sin ( nx ) dx = π π sin ( 2 nx ) dx = 0

If m n :

π π cos ( nx ) sin ( mx ) dx = sin ( ) sin ( ) sin ( ) sin ( ) m n m π π cos ( nx ) sin ( mx ) dx = n m π π cos ( nx ) sin ( mx ) dx = n m ( cos ( ) cos ( ) + cos ( ) cos ( ) n ) + n 2 m 2 π π sin ( nx ) cos ( mx ) dx = n 2 m 2 π π sin ( nx ) cos ( mx ) dx

Since n 2 m 2 1 , this implies

π π sin ( nx ) cos ( mx ) dx = 0

A similar process shows

π π cos ( mx ) cos ( nx ) dx = n 2 m 2 π π cos ( mx ) cos ( nx ) = 0

and

π π sin ( mx ) sin ( nx ) dx = n 2 m 2 π π sin ( mx ) sin ( nx ) = 0
User profile picture
2022-01-27 00:00
Comments