Exercise 8.5.9

Use the previous identity to show that

1 2 + D 1 ( 𝜃 ) + D 2 ( 𝜃 ) + + D N ( 𝜃 ) N + 1 = 1 2 ( N + 1 ) [ sin ( ( N + 1 ) 𝜃 2 ) sin ( 𝜃 2 ) ] 2

Answers

We need one more trigonometric identity, for any a , b :

sin ( a + b ) sin ( a b ) = ( sin x cos b + sin b cos a ) ( sin a cos b sin b cos a ) = sin 2 a cos 2 b sin b cos a = sin 2 a ( 1 sin 2 b ) sin 2 b ( 1 sin 2 a ) = sin 2 a sin 2 a sin 2 b sin 2 b + sin 2 a sin 2 b sin ( a + b ) sin ( a b ) + sin 2 b = sin 2 a

Assume that 𝜃 2 for integer n ; otherwise the right side isn’t defined. What follows is a lot of algebra:

1 2 + i = 1 N D i ( 𝜃 ) = 1 2 + 1 2 sin 𝜃 2 i = 1 N sin ( i𝜃 + 𝜃 2 ) = 1 2 + 1 2 sin 𝜃 2 i = 1 N ( sin i𝜃 cos 𝜃 2 + sin 𝜃 2 cos i𝜃 ) = 1 2 sin 𝜃 2 [ ( cos 𝜃 2 i = 1 N sin i𝜃 ) + ( sin 𝜃 2 ( 1 2 + i = 1 N cos i𝜃 ) ) ] + 1 4 = cos 𝜃 2 2 sin 𝜃 2 sin N𝜃 2 sin ( ( N + 1 ) 𝜃 2 ) sin 𝜃 2 + sin 𝜃 2 2 sin 𝜃 2 sin ( 2 N + 1 ) 𝜃 2 2 sin 𝜃 2 + 1 4 = 1 4 + cos 𝜃 2 2 sin 𝜃 2 sin N𝜃 2 sin ( ( N + 1 ) 𝜃 2 ) sin 𝜃 2 + sin 𝜃 2 2 sin 𝜃 2 sin N𝜃 2 cos ( N + 1 ) 𝜃 2 + cos N𝜃 2 sin ( N + 1 ) 𝜃 2 2 sin 𝜃 2 = 1 4 + 1 4 sin 2 𝜃 2 [ sin N𝜃 2 ( sin ( N + 1 ) 𝜃 2 cos 𝜃 2 + sin 𝜃 2 cos ( N + 1 ) 𝜃 2 ) + sin ( N + 1 ) 𝜃 2 ( cos 𝜃 2 sin N𝜃 2 + sin 𝜃 2 cos N𝜃 2 ) ] = 1 4 + 1 4 sin 2 𝜃 2 ( sin N𝜃 2 sin ( N + 2 ) 𝜃 2 + sin 2 ( N + 1 ) 𝜃 2 ) = 1 4 sin 2 𝜃 2 ( sin N𝜃 2 sin ( N + 2 ) 𝜃 2 + sin 2 𝜃 2 + sin 2 ( N + 1 ) 𝜃 2 ) = 1 4 sin 2 𝜃 2 ( 2 sin 2 ( N + 1 ) 𝜃 2 ) = sin 2 ( N + 1 ) 𝜃 2 2 sin 2 𝜃 2 = 1 2 ( sin ( N + 1 ) 𝜃 2 sin 𝜃 2 ) 2

which is the desired identity, except missing a factor of 1 ( N + 1 ) on both sides.

User profile picture
2022-01-27 00:00
Comments