Exercise 2.6.16

Answers

We have that

rank(LA) = dim(R(LA)) = m dim(R(LA)0) = m dim(N((L A)t))
= dim((𝔽m)) dim(N((L A)t)) = dim(R((L A)t)).

Next, let α, β be the standard basis for 𝔽n and 𝔽m. Let α, β be their dual basis. So we have that [LA)t]βα = ([LA]αβ)t = At by Theorem 2.25. Let ϕβ be the isomorphism defined in Theorem 2.21. We get

dim(R((LA)t)) = dim(ϕ β(R((LA)t))) = dim(R(L At)) = rank(LAt).
User profile picture
2011-06-27 00:00
Comments