Homepage › Solution manuals › Stephen Friedberg › Linear Algebra › Exercise 4.3.11
Exercise 4.3.11
Answers
By Exercise 4.2.25 we have . By Theorem 4.8 we have . So the conclusion is that
If is odd, we can conclude that and hence is not invertible1 . If is even, we cannot say anything. For example, the matrix is invertible while the matrix zero matrix is not invertible.
2011-06-27 00:00