Exercise 4.3.24

Let A Mn×n have the form

( 0 0 0... 0 a0 1 0 0... 0 a1 0 10... 0 a2 ... 0 0 0 ... 1 a n1 )

Compute det (A + tI), where I is the n × n identity matrix.

Answers

We use induction to claim that

det (A + tI) = tn + i=n10a iti.

For n = 1, it’s easy to see that det (A + tI) = t + a0. Suppose that the statement holds for n = k 1, consider the case for n = k. We can expand the matrix and get

det ( t 0 0 0 a0 1 t 0 0 a1 0 1t 0 a2 0 0 0 1 a k1 + t )
= tdet ( t 0 0 a1 1t 0 a2 0 0 1 a k1 ) +(1)1+ka 0 det (1t0 0 t 0 0 0 t )
= t(tk1 + i=k20a i+1ti) + (1)1+ka 0(1)k1
= tn + i=n10a iti.
User profile picture
2011-06-27 00:00
Comments