Exercise 4.5.17

Answers

Recall the definition

(δ1 + δ2)(A) = δ1(A) + δ2(A)

and

()(A) = (A)

. For brevity, we write δ for δ1 + δ2 and δ for . Now prove that both δ and δ is n-linear. Check that

δ (u1 + cv1 u2 u n ) = δ1 ( u1 + cv1 u2 u n ) +δ2 ( u1 + cv1 u2 u n )
= δ1 ( u1 u2 u n ) +cδ1 ( v1 u2 u n ) +δ2 ( u1 u2 u n ) +δ2 ( v1 u2 u n )
= δ (u1 u2 u n ) +cδ (v1 u2 u n ) .

Also check that

δ (u1 + cv1 u2 u n ) = (u1 + cv1 u2 u n )
= (u1 u2 u n ) +ckδ (v1 u2 u n ) = δ (u1 u2 u n ) +cδ (v1 u2 u n ) .

So both δ and δ is linear function for the first row when other rows are held fixed. For the cases on other rows are similar.

User profile picture
2011-06-27 00:00
Comments