Exercise 5.2.23

Answers

It’s enough to check whether K1 has a common nonzero element with the summation of others or not. Thus we can do similarly for the other cases. Let V 1 be the summation of K2,K3,,Kp. Now, if there is some nonzero vector x K1(V 1 W2), we may assume that x = u + v with u V 1 and v W2. Since W1 is the direct sum of all Ki’s, we know K1 V 1 = {0}. So x u = v0 is an element in both W1 and W2, a contradiction. Thus we’ve completed the proof.

User profile picture
2011-06-27 00:00
Comments