Exercise 6.1.24

Answers

Check the three conditions one by one.

1.
  • A = max i,j|Aij| 0,

    and the value equals to zero if and only if all entries of A are zero.

  • aA = max i,j|(aA)ij| = max i,j|a||Aij|
    = |a|max i,j|Aij| = |a|A.
  • A + B = max i,j|(A + B)ij| = max i,j|Aij + Bij|
    max i,j|Aij| + max i,j|Bij| = A + B.
2.
  • f = max t[0,1]|f(t)| 0,

    and the value equals to zero if and only if all value of f in [0,1] is zero.

  • af = max t[0,1]|(af)(t)| = max t[0,1]|a||f(t)|
    = |a|max t[0,1]|f(t)| = |a|f.
  • f + g = max t[0,1]|(f + g)(t)| = max t[0,1]|f(t) + g(t)|
    max t[0,1]|f(t)| + max t[0,1]|g(t)| = f + g.
3.
  • f =01|f(t)|dt 0,

    and the value equals to zero if and only if f = 0. This fact depend on the continuity and it would be an exercise in the Advanced Calculus coures.

  • af =01|af(t)|dt =01|a||f(t)|dt
    = |a|01|f(t)| = |a|f.
  • f + g =01|f(t) + g(t)|dt 01|f(t)| + |g(t)|dt
    =01|f(t)|dt +01|g(t)|dt = f + g.
4.
  • (a,b) = max {|a|,|b|} 0,

    and the value equals to zero if and only if both a and b are zero.

  • c(a,b) = max {|ca|,|cb|} = max {|c||a|,|c||b|}
    = |c|max {|a|,|b|} = |c|(a,b).
  • (a,b) + (c,d) = max {|a + c|,|b + d|} max {|a| + |c|,|b| + |d|}
    max {|a|,|b|} + max {|c|,|d|} = (a,b) + (c,d).
User profile picture
2011-06-27 00:00
Comments