Exercise 6.1.29

Answers

Observe that

0 = [x + iy,i(x + iy)] = [x + iy,ix y] = [ix,iy] [x,y].

So we have an instant property

[x,y] = [ix,iy].

Now check the conditions one by one.

  • x + z,y = [x + z,y] + i[x + z,iy]
    = [x,y] + [z,y] + i[x,iy] + i[z,iy] = x,y + z,y.
  • (a + bi)x,y = [(a + bi)x,y] + i[(a + bi)x,iy]
    = [ax,y] + [bix,y] + i[ax,iy] + i[bix,iy]
    = a([x,y] + i[x,iy]) + bi([ix,iy] i[ix,y])
    = a x,y + bi([x,y] + i[x,iy]) = (a + bi) x,y.

    Here we use the proven property.

  • x,y¯ = [x,y] i[x,iy]
    = [y,x] + i[y,ix] = x,y.

    Here we use the proven property again.

  • x,x = [x,x] + i[x,ix] = [x,x] > 0

    if x is not zero.

User profile picture
2011-06-27 00:00
Comments