Homepage Solution manuals Theodore Gamelin Introduction to Topology Exercise 2.2.3 (Convergence in relative topology)

Exercise 2.2.3 (Convergence in relative topology)

Let S be a subset of a topological space X. Show that a sequence {xi} in S converges to x0 S in the relative topology if and only if, considered as a sequence in X, the sequence {xi} converges to x0.

Answers

This follows directly from the definition of relative topology. In other words,

{xi} converges to x0 in TX S  for all open sets U TX S containing x0N i N : xi U  for all open sets U TX containing x0 N i N : xi U S  for all open sets U TX containing x0 N i N : xi U {xi} converges to x0 in TX,

where in the last step we have used the fact that {xi} is contained in S.

User profile picture
2022-07-04 14:57
Comments