Homepage Solution manuals Tom Leinster Galois Theory Exercise 1.2.2 (Galois Group as a Subgroup)

Exercise 1.2.2 (Galois Group as a Subgroup)

Show that Gal(f) is a subgroup of Sk.

Answers

Proof. Let f be a polynomial with coefficients in . Write α 1 , , α k for its distinct roots in . By definition,

Gal ( f ) = { σ S k ( α 1 , , α k )  and  ( α σ ( 1 ) , , α σ ( k ) )  are conjugate } ,

so Gal ( f ) S k .

Id Gal ( f ) , so Gal ( f ) .

Let σ Gal ( f ) . For every polynomial p [ t 1 , , t k ] ,

p ( α 1 , , α k ) = 0 p ( α σ ( 1 ) , , α σ ( k ) ) = 0 . (1)

Let q [ t 1 , , t k ] be any polynomial. Define p ( t 1 , , t k ) = q ( t σ 1 ( 1 ) , , t σ 1 ( k ) ) . Then p ( α 1 , , α k ) = q ( α σ 1 ( 1 ) , , α σ 1 ( k ) ) , and

q ( α 1 , , α k ) = p ( α σ ( 1 ) , , α σ ( k ) ) .

(If we write β i = α σ ( i ) for i { 1 , , k } , then β σ 1 ( j ) = α σ ( σ 1 ( j ) ) = α j for j { 1 , , n } . Thus p ( α σ ( 1 ) , , α σ ( k ) ) = p ( β 1 , , β k ) = q ( β σ 1 ( 1 ) , , β σ 1 ( k ) ) = q ( α 1 , , α k ) )

Therefore the equivalence (1) applied to the polynomial p ( t 1 , , t k ) = q ( t σ 1 ( 1 ) , , t σ 1 ( k ) ) gives

q ( α σ 1 ( 1 ) , , α σ 1 ( k ) ) = 0 q ( α 1 , , α n ) = 0 .

Since this is true for every q [ t 1 , , t k ] , this proves that σ 1 Gal ( f ) .

Let τ , σ Gal ( f ) . Let p [ t 1 , , t k ] such that p ( α 1 , , α k ) = 0 . Then

p ( α σ ( 1 ) , , α σ ( k ) ) = 0 .

For every polynomial q [ t 1 , , t k ] ,

q ( α 1 , , α k ) = 0 q ( α τ ( 1 ) , , α τ ( k ) ) = 0 .

Consider the polynomial q ( t 1 , , t k ) = p ( t σ ( 1 ) , , t σ ( k ) ) . Then q ( α 1 , , α k ) = 0 , thus q ( α τ ( 1 ) , , α τ ( k ) ) = 0 , that is

p ( α ( τ σ ) ( 1 ) , , α ( τ σ ) ( k ) ) = 0 .

(Put β i = α τ ( i ) , 1 i k . Then β σ ( j ) = α τ ( σ ( j ) ) , 1 j k , and q ( α τ ( 1 ) , , α τ ( k ) ) = q ( β 1 , , β k ) = p ( β σ ( 1 ) , , β σ ( k ) ) = p ( α τ ( σ ( 1 ) ) , , α τ ( σ ( k ) ) ) = p ( α ( τ σ ) ( 1 ) ) , , α ( τ σ ) ( k ) ) ) . We have proved that, for every p [ t 1 , , t k ] ,

p ( α 1 , , α k ) = 0 p ( α ( τ σ ) ( 1 ) , , α ( τ σ ) ( k ) ) = 0 . (2)

To prove the converse, note that from the first part, σ 1 , τ 1 are elements of Gal ( f ) , so that we have also, by the same proof given in the second part, for every polynomial q ,

q ( α 1 , , α k ) = 0 q ( α ( σ 1 τ 1 ) ( 1 ) , , α ( σ 1 τ 1 ) ( k ) ) = 0 .

Apply this to q ( t 1 , , t k ) = p ( t ( τ σ ) ( 1 ) , , t ( τ σ ) ( k ) ) . Then q ( α 1 , , α k ) = p ( α ( τ σ ) ( 1 ) , , α ( τ σ ) ( k ) ) , and

q ( α ( σ 1 τ 1 ) ( 1 ) , , α ( σ 1 τ 1 ) ( k ) ) = p ( α 1 , , α k ) .

(Put β i = α ( σ 1 τ 1 ) ( i ) ) , then β ( τ σ ) ( j ) = α j , and q ( α ( σ 1 τ 1 ) ( 1 ) , , α ( σ 1 τ 1 ) ( k ) ) = q ( β 1 , , β k ) = p ( β ( τ σ ) ( 1 ) , , β ( τ σ ) ( k ) = p ( α 1 , , α k ) .)

Then (2), applied to q , gives

p ( α ( τ σ ) ( 1 ) , , α ( τ σ ) ( k ) ) = 0 p ( α 1 , , α k ) = 0 ,

so that

p ( α 1 , , α k ) = 0 p ( α ( τ σ ) ( 1 ) , , α ( τ σ ) ( k ) ) = 0 .

This proves that τ σ Gal ( f ) .

So Gal ( f ) is a subgroup of S k . □

User profile picture
2024-05-20 10:39
Comments