Homepage Solution manuals Tom Leinster Galois Theory Exercise 5.2.8 (Algebraic elements form subfield)

Exercise 5.2.8 (Algebraic elements form subfield)

Let M : K be a field extension and write L for the set of elements of M algebraic over K. By imitating the proof of Proposition 5.2.7, prove that L is a subfield of M.

Answers

Solution: We have that L = {α M : [K(α) : K] < }.
Then α,β L,[K(α,β) : K] [K(α) : K][K(β) : K] <
Now α + β K(α,β), so K(α + β) K(α,β), hence
[K(α + β) : K] [K(α,β) : K] < , giving α + β L. Similarly, α β L.
Then α L,[K(α) : K] = [K(α) : K] < , giving α L. Similarly, 1α L (if α0), and clearly 0,1 L

User profile picture
HN
2022-11-02 04:32
Comments