Exercise 10.4

Exercise 4: For ( x , y ) 2 , define

f ˇ ( x , y ) = ( e x cos y 1 , e x sin y ) .

Prove that F ˇ = Ǧ 2 Ǧ 1 , where

Ǧ 1 ( x , y ) = ( e x cos y 1 , y ) Ǧ 2 ( u , v ) = ( u , ( 1 + u ) tan v )

are primitive in some neighborhood of ( 0 , 0 ) . Compute the Jacobians of Ǧ 1 , Ǧ 2 , F ˇ at ( 0 , 0 ) . Define

Ȟ 2 ( x , y ) = ( x , e x sin y )

and find

Ȟ 1 ( u , v ) = ( h ( u , v ) , v )

so that F ˇ = Ȟ 1 Ȟ 2 in some neighborhood of ( 0 , 0 ) .

Answers

We have

Ǧ 2 Ǧ 1 ( x , y ) = Ǧ 2 ( e x cos y 1 , y ) = ( e x cos y 1 , e x cos y tan y ) = ( e x cos y 1 , e x sin y ) = F ˇ ( x , y )

The derivative matrices are

Ǧ 1 ( x , y ) = ( e x cos y e x sin y 0 1 ) Ǧ 2 ( u , v ) = ( 1 0 tan v ( 1 + u ) cos 2 v )

so that Ǧ 1 ( 0 , 0 ) = Ǧ 2 ( 0 , 0 ) = I , hence J Ǧ 1 ( 0 , 0 ) = J Ǧ 2 ( 0 , 0 ) = 1 . By the chain rule and the properties of determinants, we also have J F ˇ ( 0 , 0 ) = 1 .

Let h ( u , v ) = v 2 e 2 u 1 . Then, for ( x , y ) near the origin,

Ȟ 1 Ȟ 2 ( x , y ) = Ȟ 1 ( x , e x sin y ) = ( e 2 x sin 2 y e 2 x 1 , e x sin y ) = ( e x cos y 1 , e x sin y ) = F ˇ ( x , y )
User profile picture
2023-08-07 00:00
Comments