Exercise 6.14

Exercise 14: Deal similarly with

f ( x ) = x x + 1 sin e t dt .

Show that

e x | f ( x ) | < 2

and that

e x f ( x ) = cos e x e 1 cos e x + 1 + r ( x ) ,

where | r ( x ) | < C e x , for some constant C .

Answers

Substituting u for e t and integrating by parts, we get

f ( x ) = x x + 1 sin e t dt = e x e x + 1 sin u u du = cos e x e x cos e x + 1 e x + 1 e x e x + 1 cos u u 2 du

Hence, substituting 1 for cos u in the integral, we get

e x f ( x ) < cos e x cos e x + 1 e e x e x e x + 1 u 2 du = ( 1 + cos e x ) e 1 ( 1 + cos e x + 1 ) ,

so that e x | f ( x ) | < 2 ( 1 + 1 e ) , which isn’t quite 2 (more work would need to be done to get this below 2). Doing another integration by parts, we get

r ( x ) = e x e x e x + 1 cos u u 2 du = e x ( sin e x e 2 x sin e x + 1 e 2 x + 2 2 e x e x + 1 sin u u 3 du ) < sin e x e x sin e x + 1 e x + 2 + 2 e x e x e x + 1 u 3 du = 1 + sin e x e x 1 + sin e x + 1 e x + 2 ,

so that | r ( x ) | < 2 ( 1 + 1 e 2 ) e x .

User profile picture
2023-08-07 00:00
Comments