Exercise 8.14

Exercise 14: If f ( x ) = ( π | x | ) 2 on [ π , π ] , prove that

f ( x ) = π 2 3 + n = 1 4 n 2 cos nx

and deduce that

n = 1 1 n 2 = π 2 6 , n = 1 1 n 4 = π 4 90 .

Answers

The maximum local rate of change of f will occur at the multiples of 2 π , where lim | f | = 2 π . Hence f satisfies the condition of Theorem 8.14 with constant M = 2 π , so we can conclude that the Fourier series of f converges to f ( x ) for all x .

Here are the Fourier coefficients of f (where n 0 , and using e inπ = e inπ for all integers n ):

c 0 = 1 2 π π 0 ( π + x ) 2 dx + 1 2 π 0 π ( π x ) 2 dx = 1 2 π ( π 3 3 + π 3 3 ) = π 2 3 c n = 1 2 π π 0 ( π 2 + 2 πx + x 2 ) e inx dx + 1 2 π 0 π ( π 2 2 πx + x 2 ) e inx dx = 1 2 π π π ( π 2 + x 2 ) e inx dx + π 0 x e inx dx 0 π x e inx dx

1 2 π π π ( π 2 + x 2 ) e inx dx = 1 2 π i n ( 2 π 2 e inπ 2 π 2 e inπ ) 1 2 π 2 i n π π x e inx dx = 0 i πn i n ( π e inπ + π e inπ ) + i πn i n π π e inx dx = 1 n 2 ( e inπ + e inπ ) i π n 2 ( e inπ e inπ ) = 1 n 2 ( e inπ + e inπ ) π 0 x e inx dx = i n ( 0 e 0 + π e inπ ) i n π 0 e inx dx = n e inπ i n i n ( e 0 e inπ ) = n e inπ + 1 n 2 ( 1 e inπ )

0 π x e inx dx = i n ( π e inπ 0 e 0 ) i n 0 π e inx dx = n e inπ i n i n ( e inπ e 0 ) = n e inπ + 1 n 2 ( e inπ 1 ) c n = 1 n 2 ( e inπ + e inπ ) + n e inπ + 1 n 2 ( 1 e inπ ) n e inπ 1 n 2 ( e inπ 1 ) = 2 n 2

Hence

f ( x ) = π 2 3 + | n | 0 2 n 2 e inx = π 2 3 + n = 1 2 n 2 ( e inx + e inx ) = π 2 3 + n = 1 4 n 2 cos nx

Letting n = 0 , we get

π 2 3 + 4 n = 1 1 n 2 = π 2 n = 1 1 n 2 = π 2 6

And by Parseval’s theorem, we get

π 4 9 + 2 n = 1 4 n 4 = 1 2 π π 0 ( π + x ) 4 dx + 1 2 π 0 π ( π x ) 4 dx π 4 9 + 8 n = 1 1 n 4 = 1 2 π 1 5 ( π 5 + π 5 ) n = 1 1 n 4 = 1 8 ( π 4 5 π 4 9 ) n = 1 1 n 4 = π 4 90
User profile picture
2023-08-07 00:00
Comments