Exercise 8.18

Exercise 18: Define

f ( x ) = x 3 sin 2 x tan x g ( x ) = 2 x 2 sin 2 x x tan x .

Find out, for each of these two functions, whether it is positive or negative for all x ( 0 , π 2 ) , or whether it changes sign. Prove your answer.

Answers

Note that ( d dx ) tan x = n tan n 1 x + n tan n + 1 x .

f ( x ) = x 3 ( 1 cos 2 x ) tan x = x 3 + 2 1 sin 2 x tan x f ( x ) = 3 x 2 + cos 2 x 1 tan 2 x f ′′ ( x ) = 6 x 2 sin 2 x 2 tan x 2 tan 3 x f ′′′ ( x ) = 6 4 cos 2 x 2 8 tan 2 x 6 tan 4 x f ( 4 ) ( x ) = 8 sin 2 x 16 tan x 40 tan 3 x 24 tan 5 x f ( 5 ) ( x ) = 16 cos 2 x 16 136 tan 2 x 240 tan 4 x 120 tan 6 x f ( 6 ) ( x ) = 32 sin 2 x 272 tan x 1232 tan 3 x 1680 tan 5 x 720 tan 7 x

Note that f ( 0 ) = f ( 0 ) = f ′′ ( 0 ) = f ′′′ ( 0 ) = f ( 4 ) ( 0 ) = f ( 5 ) ( 0 ) = 0 . Since f ( 6 ) ( x ) < 0 on ( 0 , π 2 ) , f ( 5 ) decreases monotonically throughout that interval from f ( 5 ) ( 0 ) = 0 to f ( 5 ) ( π 2 ) = , hence the same is successively true for f ( 4 ) , f ′′′ , f ′′ , f , and f .

g ( x ) = 2 x 2 sin 2 x x tan x g ( x ) = 4 x sin 2 x tan x x ( 1 + tan 2 x ) g ′′ ( x ) = 4 2 cos 2 x 2 2 tan 2 x x ( 2 tan x + 2 tan 3 x ) g ′′′ ( x ) = 4 sin 2 x 6 tan x 6 tan 3 x x ( 2 + 8 tan 2 x + 6 tan 3 x ) g ( 4 ) ( x ) = 8 cos 2 x 8 32 tan 2 x 24 tan 4 x x ( 16 tan x + 40 tan 3 x + 24 tan 5 x ) g ( 5 ) ( x ) = 16 sin 2 x 80 tan x 200 tan 3 x 120 tan 5 x x ( 16 + 136 tan 2 x + 240 tan 3 x + 120 tan 6 x )

Note that g ( 0 ) = g ( 0 ) = g ′′ ( 0 ) = g ′′′ ( 0 ) = g ( 4 ) ( 0 ) = 0 . Since g ( 5 ) ( x ) < 0 on ( 0 , π 2 ) , g ( 4 ) decreases monotonically throughout that interval from g ( 4 ) ( 0 ) = 0 to g ( 4 ) ( π 2 ) = , hence the same is successively true for g ′′′ , g ′′ , g , and g .

User profile picture
2023-08-07 00:00
Comments