Exercise 9.24

Exercise 24: For ( x , y ) ( 0 , 0 ) , define f ˇ = ( f 1 , f 2 ) by

f 1 ( x , y ) = x 2 y 2 x 2 + y 2 , f 2 ( x , y ) = xy x 2 + y 2 .

Compute the rank of f ˇ ( x , y ) , and find the range of f ˇ .

Answers

The Jacobian of f ˇ is

| D 1 f 1 ( x , y ) D 2 f 1 ( x , y ) D 1 f 2 ( x , y ) D 2 f 2 ( x , y ) | = 1 ( x 2 + y 2 ) 4 | 4 x y 2 4 x 2 y y ( y 2 x 2 ) x ( x 2 y 2 ) | = 4 x 4 y 2 4 x 2 y 4 + 4 x 2 y 4 4 x 4 y 2 ( x 2 + y 2 ) 4 = 0

so the rank of f ˇ is less than 2. Since f ˇ is nonconstant, the rank of f ˇ must be more than 0, hence the rank of f ˇ is 1.

Converting to polar coordinates, we get

f ˇ ( r cos 𝜃 , r sin 𝜃 ) = ( cos ( 2 𝜃 ) , sin ( 2 𝜃 ) 2 )

so we see that the range of f ˇ is an ellipse centered at the origin and intersecting the coordinate axes at ( ± 1 , 0 ) and ( 0 , ± 1 2 ) .

User profile picture
2023-08-07 00:00
Comments