Exercise 9.27

Exercise 27: Put f ( 0 , 0 ) = 0 , and

f ( x , y ) = xy ( x 2 y 2 ) x 2 + y 2 if ( x , y ) ( 0 , 0 ) .

Prove that

(a) f , D 1 f , D 2 f are continuous in 2 ;

(b) D 12 f and D 21 f exist at every point of 2 , and are continuous except at ( 0 , 0 ) ;

(c) D 12 f ( 0 , 0 ) = 1 , and D 21 f ( 0 , 0 ) = 1 .

Answers

(a) Converting to polar coordinates for ( x , y ) ( 0 , 0 ) , we have

f ( r cos 𝜃 , r sin 𝜃 ) = r 4 cos 𝜃 sin 𝜃 ( cos 2 𝜃 sin 2 𝜃 ) r 2 = r 2 sin 2 𝜃 cos 2 𝜃 2 = r 2 sin 4 𝜃 4 | f ( x , y ) | r 2 4 = x 2 + y 2 4

which converges to 0 = f ( 0 , 0 ) as ( x , y ) ( 0 , 0 ) .

We have

D 1 f ( 0 , 0 ) = lim h 0 f ( h , 0 ) h = lim h 0 0 h = 0 .

For ( x , y ) ( 0 , 0 ) , we have

D 1 f ( x , y ) = ( x 2 + y 2 ) ( 3 x 2 y y 3 ) 2 x ( x 3 y x y 3 ) ( x 2 + y 2 ) 2 = x 4 y + 4 x 2 y 3 y 5 ( x 2 + y 2 ) 2 D 1 f ( r cos 𝜃 , r sin 𝜃 ) = r 5 ( cos 4 𝜃 sin 𝜃 + 4 cos 2 𝜃 sin 3 𝜃 sin 5 𝜃 ) r 4 | D 1 f ( x , y ) | 6 r = 6 x 2 + y 2

which converges to 0 = D 1 f ( 0 , 0 ) as ( x , y ) ( 0 , 0 ) .

We have

D 2 f ( 0 , 0 ) = lim h 0 f ( 0 , h ) h = lim h 0 0 h = 0 .

For ( x , y ) ( 0 , 0 ) , we have

D 2 f ( x , y ) = ( x 2 + y 2 ) ( x 3 3 x y 2 ) 2 y ( x 3 y x y 3 ) ( x 2 + y 2 ) 2 = x 5 4 x 3 y 2 x y 4 ( x 2 + y 2 ) 2 D 2 f ( r cos 𝜃 , r sin 𝜃 ) = r 5 ( cos 5 4 cos 3 𝜃 sin 2 𝜃 cos 𝜃 sin 4 𝜃 ) r 4 | D 1 f ( x , y ) | 6 r = 6 x 2 + y 2

which converges to 0 = D 2 f ( 0 , 0 ) as ( x , y ) ( 0 , 0 ) .

(b) For ( x , y ) ( 0 , 0 ) , we have

D 12 f ( x , y ) = ( x 2 + y 2 ) ( 5 x 4 12 x 2 y 2 y 4 ) 4 x ( x 5 4 x 3 y 2 x y 4 ) ( x 2 + y 2 ) 3 = x 6 + 9 x 4 y 2 9 x 2 y 4 y 6 ( x 2 + y 2 ) 3 D 12 f ( r cos 𝜃 , r sin 𝜃 ) = r 6 ( cos 6 𝜃 + 9 cos 4 𝜃 sin 2 𝜃 sin 6 𝜃 ) r 6 = cos 6 𝜃 + 9 cos 4 𝜃 sin 2 𝜃 sin 6 𝜃

So D 12 f has a constant value along the rays emanating from the origin. Since this value is not a constant function of 𝜃 , we see that D 12 f ( x , y ) does not converge to a limit as ( x , y ) ( 0 , 0 ) , and so D 12 f ( x , y ) cannot be continuous at the origin. Also, for ( x , y ) ( 0 , 0 ) we can apply Theorem 9.41 and conclude that D 21 f ( x , y ) = D 12 f ( x , y ) is also not continuous at the origin.

(c) We have

D 12 f ( 0 , 0 ) = lim h 0 D 2 f ( h , 0 ) h = lim h 0 h 5 h 4 h = lim h 0 1 = 1 D 21 f ( 0 , 0 ) = lim h 0 D 1 f ( 0 , h ) h = lim h 0 h 5 h 4 h = lim h 0 1 = 1

User profile picture
2023-08-07 00:00
Comments