Homepage › Solution manuals › Yaser Abu-Mostafa › Learning from Data › Exercise 3.2
Exercise 3.2
Answers
lb, ub = -100, 100 N, dim = 100, 2 num_grid_points = 2000 coeff_lb, coeff_ub = -10, 10 eta = 1 maxit = 1000 test_N = 1000 randomized, print_out = True, True x1 = np.arange(lb, ub, 0.01) true_func, rn_func, norm_coeffs = get_true_random_funcs(N, dim, num_grid_points, lb, ub, coeff_lb, coeff_ub) df = generate_df(N, dim, true_func, rn_func) test_df = generate_df(test_N, dim, true_func, rn_func) flips = np.random.randint(N, size=(int(N/10), 1)) df.iloc[flips.flatten(), -1] = -df.iloc[flips.flatten(), ]['y'] plot_data(x1, df, norm_coeffs, None, lb, ub) flips = np.random.randint(test_N, size=(int(test_N/10), 1)) test_df.iloc[flips.flatten(), -1] = -test_df.iloc[flips.flatten(), ]['y'] avg_w_ts, avg_what_ts = np.zeros(maxit), np.zeros(maxit) avg_test_w_ts, avg_test_what_ts = np.zeros(maxit), np.zeros(maxit) K = 20 for it in range(K): w, w_ts, what_ts, test_w_ts, test_what_ts, _ = lm.pocket_algo(df.values, dim, maxit, eta, randomized, print_out, test_df.values) #print(w_ts.shape, what_ts.shape, test_w_ts.shape, test_what_ts.shape) avg_w_ts += w_ts avg_what_ts += what_ts avg_test_w_ts += test_w_ts avg_test_what_ts += test_what_ts plt.plot(np.arange(len(avg_w_ts)), avg_w_ts/K, 'b', label='Average E(w)') plt.plot(np.arange(len(avg_what_ts)), avg_what_ts/K, 'r', label='Average E(\hat(W))') plt.legend() plt.show() plt.plot(np.arange(len(avg_test_w_ts)), avg_test_w_ts/K, 'b', label='Test: Average E(w)') plt.plot(np.arange(len(avg_test_what_ts)), avg_test_what_ts/K, 'r', label='Test: Average E(\hat(W))') plt.legend() plt.show()
final Error Rate: 0.1
final normalized w: [-0.64483871 19.90322581 1. ]
final Error Rate: 0.1
final normalized w: [-1.77688889 14.46666667 1. ]
final Error Rate: 0.1
final normalized w: [-0.35070175 20. 1. ]
final Error Rate: 0.1
final normalized w: [ 2.16108108 11.54054054 1. ]
final Error Rate: 0.1
final normalized w: [ 1.11055556 20.55555556 1. ]
final Error Rate: 0.1
final normalized w: [ 1.31081967 15.08196721 1. ]
final Error Rate: 0.1
final normalized w: [-0.24679012 14.61728395 1. ]
final Error Rate: 0.1
final normalized w: [ 0. 15.76086957 1. ]
final Error Rate: 0.1
final normalized w: [-0.2315444 9.8030888 1. ]
final Error Rate: 0.1
final normalized w: [-0.71758974 10.96923077 1. ]
final Error Rate: 0.1
final normalized w: [ 0. 19.32352941 1. ]
final Error Rate: 0.1
final normalized w: [-0.10357513 11.29015544 1. ]
final Error Rate: 0.1
final normalized w: [ 0. 17.18604651 1. ]
final Error Rate: 0.1
final normalized w: [-4.18395349 12.20930233 1. ]
final Error Rate: 0.1
final normalized w: [ 1.08472868 17.54263566 1. ]
final Error Rate: 0.1
final normalized w: [0.35070175 9.68421053 1. ]
final Error Rate: 0.1
final normalized w: [-0.35696429 11.17857143 1. ]
final Error Rate: 0.1
final normalized w: [ 0.20608247 12.08247423 1. ]
final Error Rate: 0.1
final normalized w: [-0.47595238 16.42857143 1. ]
final Error Rate: 0.1
final normalized w: [ 1.05210526 11.21052632 1. ]