Exercise 6.11

Answers

αn(x) = ϕ(|x xn| r ) = e1 2 (|xxn| r )2 .

Let’s assume |x x1||x x2| |x xN|, i.e. point x1 is the nearest neighbor of x, and xN is the farest neighbor. Then we have ϕ(|xx1| r ) ϕ(|xxn| r ), i.e. α1(x) αN(x).

Then αn(x) α1(x) = e1 2 |xxn|2|xx1|2 r2 0 when r 0 if n1, and αn(x) α1(x) = 1 if n = 1.

We thus have

g(x) = n=1Nαn(x)yn m=1Nαm(x) = n=1Nαn(x) α1(x) yn m=1Nαm(x) α1(x) yn 1 when r 0 = yn

This is the same as the nearest neighbor rule.

User profile picture
2021-12-08 09:46
Comments