Exercise 6.2

Answers

Given a test point (x,y) (Generated from P(x) and π(x) = P[y = 1|x]) and the target function f(x), The probability of error on a test point x is:

e(f(x)) = P[f(x)y] = P[f(x) = 1,y = 1] + P[f(x) = 1,y = 1] = P(y = 1)1(π(x) 1 2) + P(y = 1)1(π(x) < 1 2) = (1 π(x))1(π(x) 1 2) + π(x)1(π(x) < 1 2) = min (π(x),1 π(x))

For any other hypothesis h (deterministic or not), we apply the same calculation, and have

e(h(x)) = P[h(x)y] = P[h(x) = 1,y = 1] + P[h(x) = 1,y = 1] = P(y = 1)P(h(x) = 1) + P(y = 1)(1 P(h(x) = 1)) = (1 π(x))P1 + π(x)(1 P1) = π(x) + (1 2π(x))P1

Where P1 = P(h(x) = 1), If π(x) 1 2, then 1 2π(x) 0, and π(x) + (1 2π(x))P1 π(x) + (1 2π(x)) = 1 π(x), since P1 1.

If π(x) < 1 2, then 1 2π(x) > 0, and π(x) + (1 2π(x))P1 π(x), since P1 0.

So we conclude that: e(h(x)) e(f(x)).

User profile picture
2021-12-08 09:38
Comments