Exercise 0.24

Let X and Y be CW complexes with 0 -cells x 0 and y 0 . Show that the quotient spaces X Y ( X { y 0 } { x 0 } Y ) and S ( X Y ) S ( { x 0 } { y 0 } ) are homeomorphic, and deduce that X Y S ( X Y ) .

Answers

Proof. Recall that

X Y = X × Y × I ( x , y 1 , 0 ) ( x , y 2 , 0 ) , ( x 1 , y , 1 ) ( x 2 , y , 1 ) .

Under this identification, X × { y 0 } × I { x 0 } × Y × I maps to X { y 0 } { x 0 } Y , and so we have

X Y X { y 0 } { x 0 } Y X × Y × I ( X × { y 0 } { x 0 } × Y ) × I .

Note we also have

X × Y × I ( X × { y 0 } { x 0 } × Y ) × I X × Y × I ( X Y ) × I X × Y X Y × I≅ ( X Y ) × I X Y { x 0 } { y 0 } × I≅ ( X Y ) × I ( { x 0 } { y 0 } ) × I .

Recall that

S ( X ) = X × I ( x , 0 ) ( x , 0 ) , ( x , 1 ) ( x , 1 ) .

Under this identification for X Y , we see that ( X Y ) × { 0 } and ( X Y ) × { 1 } collapse to two points. Thus, ( { x 0 } { y 0 } ) × I maps to S ( { x 0 } { y 0 } ) . By transitivity of homeomorphisms, we see

X Y X { y 0 } { x 0 } Y S ( X Y ) S ( { x 0 } { y 0 } ) .

Finally, both ( X Y , X { y 0 } { x 0 } Y ) and ( S ( X Y ) , S ( { x 0 } { y 0 } ) ) are CW pairs, and so they satisfy the homotopy extension property by Proposition 0.16, and therefore are homotopy equivalent to their quotient spaces by the subcomplex by Proposition 0.17. This gives that

X Y X Y X { y 0 } { x 0 } Y S ( X Y ) S ( { x 0 } { y 0 } ) S ( X Y ) ,

and so X Y S ( X Y ) . □

User profile picture
2023-07-24 16:50
Comments