Homepage › Solution manuals › Аркадий Мерзляк › Алгебра и начала анализа, геометрия. 11 класс › Задание 2.11
2.11. Решите уравнение:1) 22x+1 − 5 ⋅ 2x + 2 = 0;2) 4x+1 + 41−x = 10;3) 52x−3 − 2 ⋅ 5x−2 = 3;4) 9x − 6 ⋅ 3x−1 = 3;
5) 3x+1 + 32−x = 28
6) 9 2x−1 − 21 2x+1 = 2.
3) 52x−3 − 2 ⋅ 5x−2 = 3 52x 5−3 − 2 ⋅5x 52 − 3 = 0(53)
5−2x − 10 ⋅ 5−x − 375 = 0Пусть 5x = n тогда n2 − 10n − 375 = 0 D = 100 + 4375 = 1600 = 402n1 = −15;n2 = 25
[ 5−x = −15;x ∈{∅} 5x = 25 5x = 52x = 2. Ответ: 2
4) 9x − 6 ⋅ 3x−1 = 3 32x −6⋅3x 3 − 3 = 03 ⋅ 32x − 6 ⋅ 3x − 9 = 0;32x − 2 ⋅ 3x − 3 = 0. Пусть 3x = z , тогда z2 − 2z − 3 = 0z1 = 3,z2 = −1 [ 3x = 3 3x = −1;x ∈{∅} 3x = 31x = 1 Ответ: 1
5) 3x+1 + 32−x = 283 ⋅ 3x + 32 3x − 28 = 03 ⋅ 32x − 28 ⋅ 3x + 9 = 0.Пусть 3x = m, тогда3m2 − 28m + 9 = 0 D = 282 − 4 ⋅ 3 ⋅ 9 = 676m1 = 28+26 6 = 9m2 = 28−26 6 = 1 3, [ 3x = 9 3x = 1 3 ; [ 3x = 32 3x = 3−1; ; [ x = 2 x = −1. Ответ: 2;−16) 9 2x−1 − 21 2x+1 = 2 9(2x+1)−21 (2x−1) (2x−1) (2x+1) = 29⋅2x+9−21⋅2x+21 22x−1 = 2 при x≠0(т.к. 22x − 1≠0). 30−12⋅2x 22x−1 − 2 = 0(22x − 1)30 − 12 ⋅ 2x − 2 ⋅ 22x + 2 = 02 ⋅ 22x + 12 ⋅ 2x − 32 = 022x + 6 ⋅ 2x − 16 = 0Пусть 2x = z, тогдаz2 + 6z − 16 = 0D = 36 + 416 = 100z1 = (−6 − 10)2 = −8z2 = 42 = 2 [ 2x = −8,x ∈{∅} 2x = 2 2x = 21x = 1Ответ: 1