Задание 2.16

2.16. Решите уравнение:
1) 82 x 22x+3 x 32 = 0 3) 2cos 2x 3 2cos 2x + 4 = 0.
2) 5x2 51x2 4 = 0;

Answers

1.
82 x 22x+3 x 32 = 0

26 x 22x+3 x 32 = 0

26 x 22+ 3 x 25 = 0

26 x 22 23 x 32 = 0

(23 2 ) 2 4 23 x 32 = 0

Сделаем замену 23 x = t:

t2 4t 32 = 0

D = 16 + 128 = 144 = 122

t1 = 4 + 12 2 = 8,t2 = 4 12 2 = 4

.к. никогда не является правдой высказывание 23 x = 4, то

23 x = 8 3 x = 3 x = 1

Ответ: x = {1}

2.
5x2 51x2 4 = 0

5x2 51 : 5x2 4 = 0

5x2 5 5x2 4 = 0

Сделаем замену 5x2 = t:

t 5 t 4 = 0

t2 5 4t = 0

t2 4t 5 = 0

D = 16 + 20 = 36 = 62

t1 = 4 + 6 2 = 5,t2 = 4 6 2 = 1

.к. 5x2 = 1, то

5x2 = 5

x 2 = 1

x = {3}

Ответ: x = {3}.

3.
2cos 2x 3 2cos 2x + 4 = 0

2cos 2x 3 21+cos 2x 2 + 4 = 0

2cos 2x 3 21 2 2cos 2x + 4 = 0

2cos 2x 32 2 cos 2x 2 + 4 = 0

Сделаем замену 2cos 2x на t:

t2 32t + 4 = 0

D = b2 4ac = 18 16 = 2

t1 = 32 + 2 2 = 22,t2 = 2.

Решим полученную совокупность:

[ t1 = 22 t2 = 2 [2 cos 2x 2 = 22 2 cos 2x 2 = 2 [2cos 2x = 8 2cos 2x = 2 [cos 2x = 3 cos 2x = 1 [ x = 2x = 2πn [ x = x = πn

Ответ: x = πn,n

User profile picture
2022-01-02 16:03
Comments