Exercise 5.1.4

Prove that for vectors in an inner product space

||x ± y||2 = ||x||2 + ||y||2 ± 2Re(x,y).

Recall that Re(z) = 1 2(z + z¯).

Answers

Proof.

||x y||2 = (x y,x y) = (x,x y) (y,x y) = (x,x) (x,y) (y,x) + (y,y) = ||x||2 + ||y||2 (x,y) (x,y)¯ = ||x||2 + ||y||2 2Re(x,y).

Similarly ||x + y||2 = ||x||2 + ||y||2 + 2Re(x,y). □

User profile picture
2018-11-29 00:00
Comments