Exercise 5.1.7

Prove the parallelogram identity for an inner product space V ,

||x + y||2 + ||x y||2 = 2(||x||2 + ||y||2).

Answers

Proof.

||x + y||2 + ||x y||2 = (x + y,x + y) + (x y,x y) = (x,x) + (x,y) + (y,x) + (y,y)+ (x,x) (x,y) (y,x) + (y,y) = 2(x,x) + 2(y,y) = 2(||x||2 + ||y||2).
User profile picture
2018-11-29 00:00
Comments