Exercise 5.2.3

Let v1,v2,...,vn be an orthonormal basis in V .

a)
Prove that for any x = k=1nαkvk, y = k=1nβkvk
(x,y) = k=1nα kβ¯k.
b)
Deduce from this Parseval’s identity
(x,y) = k=1n(x,v k)(y,vk)¯.
c)
Assume now that v1,v2,...,vn is only an orthogonal basis, not an orthonormal one. Can you write down Parseval’s identity in this case?

Answers

a)

(x,y) = ( k=1nα kvk, k=1nβ kvk) = i=1n j=1nα iβ¯j(vi,vj) = k=1nα kβ¯k.

Because v1,v2,...,vn is an orthonormal basis, (vi,vj) = 0,ij,(vi,vj) = 1,i = j.

b) Use (x,vk) = αk,(y,vk) = βk and conclusion in a).

c) Use equation in a),

(x,y) = ( k=1nα kvk, k=1nβ kvk) = i=1n j=1nα iβ¯j(vi,vj) = k=1nα kβ¯k(vk,vk) = k=1nα kβ¯k||vk||2 = k=1n(x,vk)(y,vk)¯ ||vk||2 .

As the basis is only orthogonal, not orthonomal, then (x,vk) = (αkvk,vk) = αk||vk||2.

User profile picture
2018-11-29 00:00
Comments